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Relaxation Monte Carlo for 3D Branched Polymers: 
The Leading Confluence Exponent 
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A relaxation study of simple-cubic site trees taking 18 months of CDC Cyber 
computer time is used to estimate the radius-of-gyration dependence on the size, 
both as regards the correlation exponent and the confluent correction. The 
latter is found to be compatible with an analytic term within the uncertainty 
limits. The radius prefactor is estimated as 0.542 _+ 0.005 and the limiting site 
perimeter-to-size ratio as 2.905 _+ 0.005. 
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1. I N T R O D U C T I O N  

Among branched lattice polymers, trees (i.e., polymers with no closed 
loops) have been a favored model for the study of the corresponding 
universality class which they share in common with unrestricted polymers 
(i.e., polymers with or without loops)J 1 3) 

For  that purpose specific simulation techniques have grown in 
sophistication(4 6) and now the critical fugacity and the critical exponent O 
for the total number of trees can also be obtained from Monte Carlo 
studies through very detailed procedures. 

By extending to three dimensions the relaxation method described in 
a previous pilot paper on two-dimensional square trees, (4) we have 
attempted to achieve sufficiently long runs to study the radius-of-gyration 
evolution in detail. The correlation exponent v is 0.5 (7) and this enables us 
to write 

R g ( n ) / n  v = A + B n  - ~  + . . .  (1) 
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where Rg is the average radius of gyration and ~b the confluent correction 
exponent. 

The values for this exponent, mostly ranging well below 1 and due 
exclusively to unrestricted polymers, are summarized in ref. 8, where a 
value ~b = 1.10 _+ 0.01 for simple cubic bond polymers and a global estimate 
of % = 1.3_+ 0.2 have been found. The Monte Carlo tree studies, on the 
other hand, have always assumed ~b = 1 for both O and v, even in two 
dimensions. (5,6) 

The relaxation procedure for trees, (4) adopted from earlier looped 
polymer simulations, (9'1~ randomly chooses an endpoint of a tree, deletes 
it, and adds a perimeter site if this operation does not close a loop. Starting 
from an initial configuration chosen at random, the process is then iterated. 

2. D A T A  A N A L Y S I S  

For the present simulation, tree sizes varied from 7 to 151 with 
between 15 and 30 million iterations in an average of 130 runs for each size. 
By labeling the perimeter and end sites, we compressed their arrays without 
the use of any hash procedure, so that the time spent per million iterations 
increased by only 10% between sizes 7 and 51, for example. Even so, we 
had to rely on extensive use of a Cyber 830 for the 540 CPU days of this 
simulation (the speed would be 20 times faster on a Cyber 855). 

The average perimeter-to-size ratio was a quantity that seemed 
appropriate to monitor the accuracy of the method. For  size values 7, 9, 
and 11 the difference between the exact series expansions (J. A. M. S. 
Duarte, unpublished) and the Monte Carlo values was 0.2%. 

The evolution of the Monte Carlo values, however, is a definite 
improvement over the series, which do not extrapolate in agreement with 
the overall behavior of two- and three-dimensional polymers. (4'u'12) On the 
contrary, Monte Carlo results converge smoothly to a linear dependence 
on the inverse size with 

< t/s > ~ 2.905 _ 0.005 (2) 

as shown in Fig. 1. 
Once again, as for site square trees, (4) this ratio falls closer to the 

unrestricted animal value (2.78 _+ 0.04 (11)) than to the upper limit ratio 4. 
For  the radius of gyration, the leading dependence on v is well 

satisfied and the confluent factor can be isolated according to Eq. (1). We 
have fitted the sequence of values extensively, trying to determine the 
asymptotic behavior of ~b. Figure 2, where the data are plotted against, 
respectively, ~b = 1.2, 1.0, and 0.8, is a good graphic summary of our conclu- 
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sions. The first section of values is well fitted to an exponent around 0.8, 
which increases steadily to 1.0 toward the end of it. The second set of 
points, for size values over 51, is very scattered and would bring the value 
of ~b close to 1.1. Higher values, however, are in poor agreement with the 
initial section (as can be seen from the noticeable curvature in their plots 
in Fig. 2). 

We believe that this attempt at a Monte Carlo 3D confluent correction 
is in broad agreement with an exponent ~b around 1.0 that might include 
both 0.8 and 1.1. The last value was found for cubic bond polymers with 
loops in ref. 8 and therefore it seems plausible that the identity of exponents 
between trees and unrestricted polymers should extend to the confluent 
terms also. 

In fact, since the set of critical exponents corresponds to those of the 
Yang-Lee edge singularity in one dimension, ~7"8) our result can be seen to 
be in good, unforced agreement with the analytic correction obtained for 
that case. Our estimated value of A =0.542_+0.005 tries cautiously to 
reflect the consequences of this range of possible ~b values. 
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